If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6w^2-24w-12=0
a = 6; b = -24; c = -12;
Δ = b2-4ac
Δ = -242-4·6·(-12)
Δ = 864
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{864}=\sqrt{144*6}=\sqrt{144}*\sqrt{6}=12\sqrt{6}$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-24)-12\sqrt{6}}{2*6}=\frac{24-12\sqrt{6}}{12} $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-24)+12\sqrt{6}}{2*6}=\frac{24+12\sqrt{6}}{12} $
| (3x-6)(x+16)=0 | | 4y+5y-9=2y+9y+9-4 | | Y=-60x+600 | | 4(c-4)=9 | | -9x-27+4x=-2 | | 8x+30=5-2x | | 3x+4x=4x-3x= | | 15u+4u=76 | | -8x-12x=20 | | 1.2x+1.4=8.6 | | 5r+65=25 | | –4z−6=2z | | 8(x+2)=5(x-10) | | 8x+30=52x | | 24=(w+6)+2w | | (1+y)³=1.33 | | G(n)=6+3n | | 2m+6m+7+5=5m+8m+1+1 | | -3(2x=3)=33 | | y=18.5 | | 3/4x=27/8 | | 4^2x-10=216^x+4 | | (2x-4)(5x+5)=0 | | (-7x)-4=52 | | 6=r-2/4 | | -4.5z+3.1z=7 | | 4r+6r+9-9=5(2r) | | 27/k=3 | | 15.2=0.4(5x-12) | | 3x-1/4=1/2(6x-1) | | 12x=14=23 | | 4(p+6)=p+3p+6 |